Stagewise Lasso Stagewise Lasso
نویسندگان
چکیده
Many statistical machine learning algorithms (in regression or classification) minimize either an empirical loss function as in AdaBoost, or a penalized empirical loss as in SVM. A single regularization tuning parameter controls the trade-off between fidelity to the data and generalibility, or equivalently between bias and variance. When this tuning parameter changes, a regularization “path” of solutions to the minimization problem is generated, and the whole path is needed to select a tuning parameter to optimize the prediction or interpretation performance. Algorithms such as Lasso and Forward Stagewise Fitting (FSF) (aka e-Boosting) are of great interest because of their resulted sparse models for interpretation in addition to prediction. In this paper, we propose the BLasso algorithm that ties the FSF (e-Boosting) algorithm with the Lasso method that minimizes the L1 penalized L2 loss. BLasso is derived as a coordinate descent method with a fixed stepsize applied to the general Lasso loss function (L1 penalized L2 loss). It consists of both a forward step and a backward step. The forward step is similar to e-Boosting or FSF, but the backward step is new and revises the FSF (or e-Boosting) path to approximate the Lasso path. In the cases of a finite number of base learners and a bounded Hessian of the loss function, the BLasso path is shown to converge to the Lasso path when the stepsize goes to zero. For cases with a larger number of base learners than the sample size and when the true mdoel is sparse, our simulations indicate that the BLasso model estimates are sparser than those from FSF with comparable or slightly better prediction performance, and that the the discrete stepsize of BLasso and FSF has an additional regularization effect in terms of prediction and sparsity. Moreover, we introduce the Generalized BLasso algorithm to minimizing a general convex loss penalized by a general convex function. Since the (Generalized) BLasso relies only on differences not derivatives, we conclude that it provides a class of simple and easy-to-implement algorithms for tracing the regularization or solution paths of penalized minimization problems.
منابع مشابه
Forward stagewise regression and the monotone lasso
Abstract: We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing tha...
متن کاملA general framework for fast stagewise algorithms
Forward stagewise regression follows a very simple strategy for constructing a sequence of sparse regression estimates: it starts with all coefficients equal to zero, and iteratively updates the coefficient (by a small amount ) of the variable that achieves the maximal absolute inner product with the current residual. This procedure has an interesting connection to the lasso: under some conditi...
متن کاملBoosted Lasso
In this paper, we propose the Boosted Lasso (BLasso) algorithm that is able to produce an approximation to the complete regularization path for general Lasso problems. BLasso is derived as a coordinate descent method with a fixed small step size applied to the general Lasso loss function (L1 penalized convex loss). It consists of both a forward step and a backward step and uses differences of f...
متن کاملA Note on the Lasso and Related Procedures in Model Selection
The Lasso, the Forward Stagewise regression and the Lars are closely related procedures recently proposed for linear regression problems. Each of them can produce sparse models and can be used both for estimation and variable selection. In practical implementations these algorithms are typically tuned to achieve optimal prediction accuracy. We show that, when the prediction accuracy is used as ...
متن کاملDiscussion of “ Least Angle Regression ” by Efron
Algorithms for simultaneous shrinkage and selection in regression and classification provide attractive solutions to knotty old statistical challenges. Nevertheless, as far as we can tell, Tibshirani’s Lasso algorithm has had little impact on statistical practice. Two particular reasons for this may be the relative inefficiency of the original Lasso algorithm and the relative complexity of more...
متن کامل